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We show that Hamiltonian nonlinear dispersive wave systems with cubic nonlinearity and random initial
data develop, during their evolution, anomalous correlators. These are responsible for the appearance of
“ghost” excitations, i.e., those characterized by negative frequencies, in addition to the positive ones
predicted by the linear dispersion relation. We use generalization of the Wick’s decomposition and the wave
turbulence theory to explain theoretically the existence of anomalous correlators. We test our theory on the
celebrated� -Fermi-Pasta-Ulam-Tsingou chain and show that numerically measured values of the
anomalous correlators agree, in the weakly nonlinear regime, with our analytical predictions. We also
predict that similar phenomena will occur in other nonlinear systems dominated by nonlinear interactions,
including surface gravity waves. Our results pave the road to study phase correlations in the Fourier space
for weakly nonlinear dispersive wave systems.
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I. INTRODUCTION

Wave turbulence theory has led to successful predictions
on the wave spectrum in many fields of physics[1,2]. In this
framework the system is represented as a superposition of a
large number of weakly interacting waves with the complex
normal variablesak ¼ aðk; tÞ. In its essence, the classical
wave turbulence theory is a perturbation expansion in the
amplitudeak of the nonlinearity, yielding, at the leading
order, to a system of quasilinear waves whose amplitudes are
slowly modulated by resonant nonlinear interactions[1–6].
This modulation leads to a redistribution of the spectral
energy density among length scales, and is described by a
wave kinetic equation. One way to derive the wave kinetic
equation is to use the random phase and amplitude approach
developed in Refs.[2,7,8]. The initial state of the system can
always be prepared so that the assumption of random phases
and amplitudes is true. Whether the phases remain random in
the evolution of the system has been an issue of intense
discussions. In wave turbulence theory, the standard object to
look at is the second-order correlator,hakðtÞa�

l ðtÞi, where
h� � �i is an average over an ensemble of initial conditions
with different random phases and amplitudes. As will be

clear later on, under the homogeneity assumption, the
second-order correlator is related to the wave action spectral
density function, i.e., thewave spectrum, nk ¼ nðk; tÞ.
However, one should note that the complex normal variable,
as defined in the wave turbulence theory, is a complex
function also in physical space. Therefore, the second-order
statistics are not fully determined by the above correlator.
The so-called“anomalous correlator,” hakðtÞal ðtÞi, see
Refs.[9,10], needs also to be computed. Under the hypoth-
esis of homogeneity, this will give theanomalous spectrum,
mk ¼ mðk; tÞ, to be defined in the next section. Indeed, if
phases are totally random, this quantity would be zero. We
show that, in the nonlinear evolution of the system, this is not
the case. Far from it, this quantity is strongly nonzero and, in
the limit of weak nonlinearity, we predict analytically and
verify numerically its value.

Our ideas are based on the extension of the wave
turbulence theory to include these anomalous correlators.
Notably, conventional wave turbulence theory has been
successful in the understanding of the spectral energy
transfer in complex wave systems such as the ocean[11],
optics [12] and Bose-Einstein condensates[13], one-
dimensional chains[14], and magnets[15]. Analogously,
anomalous correlators first appeared in the well-known
Bardeen-Cooper-Schriffer theory of superconductivity[16].
Subsequently, anomalous correlators have been studied in
S theory[9,10].

Recently, anomalous correlations were shown to play
an important role in explaining numerical observations
of nondecaying oscillations around a steady state in a
turbulence-condensate system modeled by the nonlinear

*Corresponding author.
lvovy@rpi.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 Internationallicense.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 10, 021043 (2020)

2160-3308=20=10(2)=021043(12) 021043-1 Published by the American Physical Society



Schrödinger equation[17–19]. Such oscillations, corre-
sponding to a fraction of the wave action being periodically
converted from the condensate to the turbulent part of the
spectrum, were shown to be directly due to phase coherence
[17]. In Ref. [20], a system of coupled nonlinear
Schrödinger equations has been considered and specific
attention was focused on the phenomena of recurrence of
incoherent waves observed in the early stages of the
dynamics. The authors derived a variant of the kinetic
equation which includes anomalous correlators; the pecu-
liarity of such an equation is that it is capable of describ-
ing properly the recurrence phenomena observed in the
simulations.

One of the main tools used to derive the theory is the
Wick’s contraction rule that allows one to split higher-
order correlators as a sum of products of second-order
correlators, plus cumulants. To explain analytically the
existence of the anomalous correlators, it is necessary to
use the more general form of the Wick’s decomposition,
namely the form that allows anomalous correlators. We
then demonstrate that the anomalous correlators are
responsible for creating the“ghost waves,” i.e., the waves
with the frequency equal to the negative of the frequency
predicted by the linear dispersion relationship. These
ideas are tested on a simple, but nontrivial, system, i.e.,
the � -Fermi-Pasta-Ulam-Tsingou (FPUT) chain. The
chain model was introduced in the 1950s to study the
thermal equipartition in crystals[21]: it consists ofN
identical masses, each one connected by a nonlinear
string; the elastic force can be expressed as a power
series in the displacement from equilibrium. Fermi, Pasta,
Ulam, and Tsingou integrated numerically the equations
of motion and conjectured that, after many iterations, the
system would exhibit a thermalization, i.e., a state in
which the influence of the initial modes disappears and the
system becomes random, with all modes excited equally
(equipartition of energy) onaverage. Successful predic-
tions on the timescale of equipartition have been recently
obtained in Refs.[14,22,23]using the wave turbulence
approach. In this paper, we perform extensive numerical
simulations with initial random data and look at all the
possible excitations, once a thermalized state has been
reached. This is all done by analyzing the spatial-temporal
ðk � � Þ spectrum, i.e., the square of the space-time
Fourier transform of the wave amplitudes. Analyses of
the effective dispersion relation in the nonlinear system is
a well-known and widely used theoretical and numerical
tool; see, e.g., Ref.[24].

We give numerical evidence that in addition to the
“normal” waves with frequency� predicted by the linear
dispersion relation for wave numberk, there are the“ghost”
excitations with the negative frequencies. Our theoretical
analysis reveals that the origin of those ghost excitations
resides on the nonzero values of the second-order anoma-
lous correlator.

II. MODEL

The theory that we develop hereafter applies to any
system with cubic nonlinearity. Examples of such systems,
among others, include deep water surface gravity waves
[25], nonlinear Klein-Gordon[22], and the � -Fermi-
Pasta-Ulam-Tsingou chain. In normal variablesak the
Hamiltonian of these systems assumes the canonical form:

H ¼
X

k

� kjakj2 þ
X

k1;k2;k3;k4

�
ðTð1Þ

1234a
�
1a2a3a4 þ c:c:Þ� 234

1

þ
1
2

Tð2Þ
1234a

�
1a�

2a3a4� 34
12

þ
1
4

Tð4Þ
1234ða

�
1a�

2a�
3a

�
4 þ c:c:Þ� 1234

�
; ð1Þ

where� k ¼ � ðkÞare the positive frequencies associated

to the wave numbers via the dispersion relation,TðiÞ
1234

are coefficients that depend on the problem considered
and satisfy specific symmetries for the system to be
Hamiltonian, c.c. implies complex conjugation,aj ¼
aðkj ; tÞare the complex normal variables, and� lm

ij ¼ � ðki þ
kj � kl � kmÞis the Kronecker delta. We assume that the
only resonant interactions possible are the ones for which
the following two relations are satisfied for a set of wave
numbers:

k1 þ k2 ¼ k3 þ k4; � ðk1Þ þ � ðk2Þ ¼� ðk3Þ þ � ðk4Þ:

ð2Þ

With the objective of presenting some comparison with
numerical simulations, out of many physical systems
described by the above Hamiltonian, we select a simple
one-dimensional system, the� -Fermi-Pasta-Ulam-Tsingou
chain. Modeling a vibrating string, this problem consists of
a system ofN identical particles connected locally to each
other by a nonlinear oscillator. In physical space in terms of
the displacements with respect to the equilibrium position
qj ðtÞand their momentap j ðtÞ, the Hamiltonian takes the
following form:

H ¼ H2 þ H4; ð3Þ

with

H2 ¼
XN

j ¼1

�
1
2

p2
j þ

1
2

ðqj � qj þ 1Þ2

�
;

H4 ¼
�
4

XN

j ¼1

ðqj � qj þ 1Þ4: ð4Þ

� is the nonlinear spring coefficient (without loss of
generality, we have set the masses and the linear spring
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constant equal to 1). Newton’s law in physical space is
given by

�qj ¼ ðqj þ 1 þ qj � 1 � 2qj Þ þ � ½ðqj þ 1 � qj Þ3 � ðqj � qj � 1Þ3�:

ð5Þ

We assume periodic boundary condition; our approach is
developed in Fourier space and the following definitions of
the direct and inverse discrete Fourier transforms are
adopted:

Qk ¼
1
N

XN� 1

j ¼0

qj e� i2� kj=N ; qj ¼
XN=2

k¼� N=2þ 1

Qkei2� jk=N ;

ð6Þ

wherek are discrete wave numbers andQk are the Fourier
amplitudes. The displacementqj and momentump j of the
j particle are linked by canonically conjugated Hamilton
equations:

_p j ¼ �
� H
� qj

; _qj ¼
� H
� p j

:

We then perform the Fourier transformation to Fourier
images of position and momenta, and then additional
canonical transformation to complex amplitudeak given by

ak ¼
1
��������
2� k

p ð� kQk þ iPkÞ; ð7Þ

where � k ¼ 2j sinð� k=NÞj> 0 and Qk and Pk are the
Fourier amplitudes ofqj andp j , respectively. In terms ofak

the equation of motion reads, see Ref.[26],

i
da1

dt
¼ � k1

a1 þ
X

k2;k3;k4

ðTð1Þ
1234a2a3a4� 234

1 þ Tð2Þ
1234a

�
2a3a4� 34

12

þ Tð3Þ
1234a

�
2a�

3a4� 4
123 þ Tð4Þ

1234a
�
2a

�
3a

�
4� 1234Þ; ð8Þ

where all wave numbersk2, k3, andk4 are summed from 0
toN � 1 and� cd::

ab:: ¼ � ðka þ kb þ � � � � kc � kd � � � �Þis the
generalized Kronecker delta that accounts for a periodic
Fourier space; i.e., its value is one when the argument is

equal to 0 (modN). The matrix elementsTð1Þ
1234, Tð2Þ

1234, Tð3Þ
1234

prescribe the strength interactions of wave numbersk1, k2,
k3, andk4. Their values are given in the AppendixA.

A. ðk � � Þspectrum

The main statistical object discussed in this paper is the
wave number-frequencyðk � � Þspectrum. Starting from
the complex amplitudeaðk; tÞwe take the Fourier trans-
form in time so that we getaðk; � Þ; under the hypothesis of

homogeneous and stationary conditions, the second-order
ðk � � Þcorrelator takes the following form,

haðki ; � pÞaðkj ; � qÞ� i ¼ Nðki ; � pÞ� ðki � kj Þ� ð� p � � qÞ;

ð9Þ

whereh� � �i implies averages over initial conditions with
different random phases.Nðk; � Þis theðk � � Þspectrum
defined as follows:

NðaÞðk; � Þ ¼
1
2�

1
N

Z
þ �

��

XN

l¼1

Rðl; � Þe� i2� kl=Ne� i � � d� ;

ð10Þ

whereRðl; � Þ ¼ haj ðtÞ� aj þ lðt þ � Þi is the space-time auto-
correlation function.

Linear ðk � � Þspectrum.—Before diving into the non-
linear dynamics, we discuss the predictions in the linear
regime. Therefore, we start by neglecting the nonlinearity
in Eq. (8) and find the solution in the form

akðtÞ ¼akðt0Þe� i � kt; ð11Þ

wheret0 is a time at which the solution is known or an
initial condition. We then take the Fourier transform in
time:

aðk; � Þ ¼aðk; t0Þ� ð� � � kÞ: ð12Þ

After multiplication by its complex conjugate and taking
averages over different realizations with the same statistics,
we get

NðaÞðk; � Þ ¼nðaÞðk; t0Þ� ð� � � kÞ; ð13Þ

wherenðaÞðk; t0Þis the standard wave spectrum at timet0
related to the second-order correlator as

haðki ; t0Þaðki ; t0Þ� i ¼ nðaÞðki ; t0Þ� ðki � kj Þ; ð14Þ

and defined via the autocorrelation function as

nðaÞðki ; t0Þ ¼
1
N

X

l

haj ðt0Þaj þ lðt0Þ� i e� i2� kl=N: ð15Þ

In the linear regimenðaÞðki ; t0Þdoes not evolve in time.
Equation(13) implies that in the linear case theðk � � Þ

spectrum is different from zero only for those values of�
andk for which the dispersion relation is satisfied. Note that
in this formulation� k is defined as a positive quantity;
therefore, only the positive branch of the dispersion relation
curve appears in the linear regime.
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B. Numerical results for theðk � � Þspectrum

We now test the predictions from Eq.(13) in both the
linear and nonlinear regimes. We perform numerical
simulations of Eq.(5) using a symplectic algorithm; see
Ref. [27]. We use 32 particles in the simulations; such a
choice is completely uninfluential for the results presented
below. In the linear regime, we just prescribe a thermalized
spectrum with some initial random phases of the wave
amplitudesak and evolve the system in time up to a desired
final time; a Fourier transform in time is then taken to build
theðk � � Þspectrum. In the nonlinear regime we perform
long simulations up to a thermalized spectrum. For a given
nonlinearity, 1000 realizations characterized by different
random phases are made and ensemble averages are
considered to compute theðk � � Þ spectrum. All simu-
lations have the same initial linear energy and, from an
operative point of view, the only difference between them is
the value of� . To characterize the strength of the non-
linearity, we use the following ratio between nonlinear and
linear Hamiltonians at the beginning of each simulation:

� ¼
H4

H2
� � : ð16Þ

Results are shown in Fig.1, where, for different values of
the nonlinear parameter� , the spectrumNðaÞðk; � Þ is

plotted using a colored logarithmic scale. We first focus
our attention on the linear regime,� ¼ 0. Results are shown
in Fig.1(a). As well predicted by the theory, the plot shows
dots in the positive frequency plane, where the frequencies
� and wave numbersk satisfy the linear dispersion curve
� k. Increasing the nonlinearity, Figs.1(b)–1(d), two well-
known effects appear. The first one is a shift of the
frequencies, due to nonlinearity [this is more evident in
Figs.1(c)and1(d)where the frequency scale in the vertical
axes has been changed]. The second one is the broadening
of the frequencies. This is related to the fact that the
amplitude for each wave number is not constant in time;
therefore, the amplitude-dependent frequencies are not
constant in time and they oscillate around a mean value
with some fluctuations. Those results are well understood,
at least in the weakly nonlinear regime, and can be
predicted using wave turbulence tools; see Refs.[2,23].
Besides these two effects, starting from Fig.1(b), the
presence of a lower branch, whose intensity is much less
than the upper one, starts to be visible. The lower curve
becomes more important and, when the nonlinearity is of
order one, is of the same order of magnitude as the upper
one. The total number of waves in the simulationNtot is
given by the integral over� and the sum over allk of the
functionNðaÞðk; � Þ. In the weakly nonlinear regime,Ntot is
an adiabatic invariant of the equation of motion(5); the

FIG. 1. ðk � � Þspectrum,NðaÞðk; � Þ, for different values of� : (a)� ¼ 0, (b) � ¼ 0.0089(c) � ¼ 0.089(d) � ¼ 1.12. In the linear case,
(a), theNðaÞðk; � Þis different from 0 only when the frequency� matches the linear dispersion relation. As the nonlinearity is increased,
(b)–(d), a frequency shift, a broadening of the frequencies, and a lower branch less intense than the upper one are visible. Waves with
negative frequencies are named“ghost” excitations.
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plot highlights the existence of waves with negative
frequencies, which will be named“ghost” excitations.
One of the scopes of the present paper is the understanding
of the origin of such waves. Before entering into the
discussion, we show in Fig.2 the ratio of ghost excitations
Nghost, i.e.,NðaÞðk; � Þintegrated over negative frequencies
and summed over all wave numbers, divided by the total
number of wavesNtot. As can be seen from the plot, there is
a monotonic growth of the ghost waves that, for very large
nonlinearity, can reach values up to 25% of the total
number.

III. ANOMALOUS CORRELATORS

To explain the presence of ghost excitations, we introduce
the so-called second-order anomalous correlator[9,10,20]:

hakðtÞaj ðtÞi ¼mkðtÞ� ðk þ j Þ; ð17Þ

with the anomalous spectrum defined as

mðaÞ
k ðtÞ ¼

1
N

X

l

haj aj þ l i e� i2� kl=N: ð18Þ

Similarly, we also introduce the second-orderðk � � Þ
anomalous correlator:

haðki ; � l Þaðkj ; � mÞi ¼MðaÞðki ; � l Þ� ðki þ kj Þ� ð� l þ � mÞ;

ð19Þ

where

MðaÞðk; � Þ ¼
1
2�

1
N

Z
þ �

��

XN

l¼1

Sðl; � Þe� i2� kl=Ne� i � � d�

ð20Þ

andSðl; � Þ ¼ haj ðtÞaj þ lðt þ � Þi. The presence in Eqs.(17)
and (19) of the Kronecker� over wave numbers and the
Dirac � over frequency are related to the hypothesis of
statistical homogeneity and stationarity, respectively. Note
that MðaÞðk; � Þ is not the Fourier transform in time of

mðaÞ
k ðtÞand, in general, both can be complex functions. To

verify numerically that the anomalous correlator is indeed
nonzero, we measure numerically the real part of the
second-order correlatorhaki

ðtÞakj
ðtÞi as a function ofk1

and k2. Results are plotted in Fig.3 where we show the
results of two numerical simulations characterized by two
different values of the nonlinear parameter: Fig.3(a) � ¼
0.0089 and Fig.3(b) � ¼ 1.12. In both cases, a diagonal
contribution is visible, pointing out the existence of
anomalous correlators in the� -FPUT model.

Generalization of the Wick’s decomposition.—Using
Eq. (17), it is straightforward to extend the Wick’s
decomposition by taking into account the anomalous
correlators, as done in Ref.[15]:

ha�
ka�

l apani ¼ nknlð� k
p � l

n þ � k
n� l

pÞ þ m�
kmp � kl � pn ;

ha�
kalapani ¼ nkmpð� l

k� pn þ � n
k� lp Þ þ nk�

p
k ml � nl ;

hakalapani ¼ mkml ð� kp � ln þ � kl � pn þ � kl � pnÞ: ð21Þ

FIG. 2. Ratio between the number of ghost excitationsNghost
over the total number of wavesNtot as a function of the
nonlinearity.

FIG. 3. The real part of the second-order anomalous correlator, Re½hak1
ak2

i� , for (a)� ¼ 0.0089, (b) � ¼ 1.12. A diagonal contribution
corresponding tok2 ¼ � k1 is evident in both panels. As the nonlinearity is increased, the contribution becomes larger.
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The above relations will be fundamental for making a
natural closure of the moments when calculating analyti-
cally theðk � � Þspectrum.

In Fig. 4, we find further evidence justifying this
decomposition by plotting the real part of the fourth-order
correlator hak1

ak2
a�

k3
a�

k1þ k2� k3
i with k3 ¼ 20, computed

from numerical simulations for Fig.4(a) � ¼ 0.0089 and
Fig. 4(b) � ¼ 1.12. The diagonal lines in both figures,
highlighting the contribution from the second-order anoma-
lous correlator, are noticeable. The vertical and horizontal
lines correspond to the trivial resonances in which two
wave numbers are equal (modN).

A. Theoretical prediction for the anomalous
correlator in the weakly nonlinear regime

A key step for the development of a theory for the
anomalous correlator is the change of variable (near
identity transformation) which allows one to removebound
modes, i.e., those modes that are phase locked tofree
modes and do not obey the linear dispersion relation. The
procedure is well known in Hamiltonian mechanics and
well documented, e.g., in Ref.[1]. We accomplish this via
the following canonical transformation from variableakðtÞ
to bkðtÞ:

a1 ¼ b1 þ
X

k2;k3;k4

½Bð1Þ
1234b2b3b4� 234

1 þ Bð3Þ
1234b

�
2b

�
3b4� 4

123

þ Bð4Þ
1234b

�
2b�

3b
�
4� 1234�; ð22Þ

with the coefficientsBðiÞ
1234 selected in such a way as to

remove nonresonant terms in the original Hamiltonian[28].
Their values are given in AppendixA.

The transformation is asymptotic in the sense that the
small amplitude approximation is made and the terms in
the sums on the right-hand side are much smaller than the
leading-order termb1. The evolution equation for variable

bkðtÞcontains resonant interactions and takes the following
standard form:

i
db1

� t
¼ � 1b1 þ

X

k2;k3;k4

Tð2Þ
1234b

�
2b3b4� 34

12 þ higher-order terms;

where higher-order terms arising from the transformation
have been neglected.

Using the transformation(22) and the generalized
Wick’s decomposition(21), we can now build the
time-averaged anomalous spectrum (for details, see
AppendixB):

hmðaÞ
k ðtÞit ¼ 2ðnðaÞ

k þ nðaÞ
� k Þ

X

j

Bð3Þ
k;� k;j;j nðaÞ

j ; ð23Þ

whereh� � �it implies averaging over time. For the� -FPUT

system in thermal equilibrium, wherenðaÞ
k ¼ T=� k with T

constant, Eq.(23) reduces to

� kjhmðaÞ
k ðtÞit j ¼

3NT2�
2

: ð24Þ

In Fig.5, we compare this prediction for� kjhmðaÞ
k ðtÞit j in

thermal equilibrium to the values given by numerical
simulations for varying values of nonlinearity: the results
are in good agreement in the weakly nonlinear regime,
� < 0.1. Here 500 ensembles were used to build the
correlatormkðtÞ; the subsequent time-averaging window
used was105 with a sample spacing of� t ¼ 0.1. For larger
nonlinearity, it is expected that higher-order terms play a
role in the evolution of the anomalous correlator.

In Fig. 6, we show the time evolution of the first five
modes ofjh� km

ðaÞ
k ðtaÞita<t j, where ensemble averaging is

used to buildmðaÞ
k ðtÞ and time averaging is used over

the window 0 < t a < t to remove fast oscillations

FIG. 4. Fourth-order correlatorjRe½hak1
ak2

a�
k3

a�
k1þ k2� k3

i�j with k3 ¼ 20. (a) � ¼ 0.0089, (b) � ¼ 1.12. Different horizontal, vertical,
and diagonal lines are visible. Horizontal and vertical lines correspond to trivial resonances:k1 ¼ k3, vertical line;k2 ¼ k3, horizontal
line; k2 ¼ � k1 þ N, diagonal line. The latter line corresponds to the presence of an anomalous second-order correlator. The intensity of
the lines is larger for larger nonlinearity.
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[see Eq.(B5)]. We verify that this quantity is indeed
initially zero due to the randomness of phases. Here we
use a larger value of nonlinearity� ¼ 10 to show the
development of the anomalous correlator in a shorter time
window. The amplitudes were initialized so thatjakðt ¼
0Þj ¼

�����������������������
½ðN � kÞ=2�

p
for k ¼ � 1, � 2, � 3, with higher

modes zero. The phases were initially normally distributed.
We observe that the anomalous correlator grows with time,
reaching a peak in modes 1, 2, and 3, before it eventually
saturates between all modes equally, with� kjhmðaÞ

k ðtaÞit<t a
j

being constant for large times, as expected from our
prediction Eq.(23).

IV. THEORETICAL PREDICTION FOR
GHOST EXCITATIONS

We have now developed all the tools for predicting
analytically theðk � � Þ spectrum as defined in Eq.(9).
Taking the Fourier transform in time of the canonical

transformation (see AppendixC), using the generalized
Wick’s decomposition and the hypothesis of statistical
stationarity and homogeneity, we get at leading order:

NðaÞðk; � Þ ¼nðbÞðk; t0Þ� ð� � � kÞ

þ FðkÞRe½mðbÞðk; t0Þ�� ð� þ � kÞ; ð25Þ

with

FðkÞ ¼4
Z X

l

Bð3Þ
klkl N

ðbÞðl; � pÞd� p ; ð26Þ

where we have used the fact that at the leading
order, mðbÞðk; tÞ� mðaÞðk; tÞ and nðbÞðk; t0Þ� nðaÞðk; t0Þ.
Equation(25)predicts the presence of the upper and lower
branch in theðk � � Þ plane. The presence of ghost
excitations is clearly related to the second-order anomalous
correlator. We can now predict the percentage of ghost
excitations as

Nghost

Ntot
¼

P
kRe½mðaÞðk; t0Þ�FðkÞ

P
kf nðaÞðk; t0Þ þ Re½mðaÞðk; t0Þ�FðkÞg

: ð27Þ

In Fig. 7, we plot the ratio as determined by Eq.(27)
compared with the ratio observed in our simulations for
several values of nonlinearity. We find that the results agree
for small values of nonlinearity� < 0.03; for larger non-
linearity, the theoretical prediction is considerably larger.

V. NONLINEAR STANDING WAVES

The development of a regime characterized by an
anomalous spectrum corresponds to a tendency for the
system to develop standing waves in the original displace-
ment variableqj ðtÞ. Indeed, the existence of an anomalous
spectrum implies a correlation between positive and neg-
ative wave numbers. The connection between the anoma-
lous correlator and standing waves can be seen in the
following illustrative example. Consider the restrictive
ensemble of realizations of thelinear system where
amplitudes and phases are initiated in Fourier space with

FIG. 6. Time evolution of the first five modes of the averaged
quantityjh� km

ðaÞ
k ðtaÞita<t j from t ¼ 0 to t ¼ 1000, with � ¼ 10.

FIG. 7. The ratio between the number of ghost excitations
Nghost over the total number of wavesNtot as a function of the
nonlinearity. Values given by numerical simulations (blue) are
compared with the theoretical predictions (red) given by Eq.(27).

FIG. 5. Comparison of anomalous spectrum� kjhmðaÞ
k ðtÞit j as

observed in numerical simulations (dots) with theoretical pre-
dictions given by Eq.(24) (dashed lines) for� ¼ 0.065, 0.072,
0.086, and 0.101.
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a correlation between wave numbersk ¼ 1 and k ¼ � 1.
Namely, let us initialize the system with equal amplitudes
and opposing phases:

akðt ¼ 0Þ ¼

8
<

:

A1e� i � 1 if k ¼ 1

A1ei � 1 if k ¼ � 1

0 otherwise;

ð28Þ

with the random phase� 1. In terms of the displacement
variables, this would correspond to the system being
initially at rest and displaced from equilibrium as a single
wave:

qj ðt ¼ 0Þ ¼2A1

������
2

� 1

s

cos
�

2� j
N

� � 1

�
:

Since the system is assumed to be linear, the time
evolution of complex amplitudesa1 and a� 1 will be
given by

a� 1ðtÞ� A1e� ið� 1t� � i Þ:

Averaging over random phase� 1, the anomalous correlator
becomes

m1 ¼ ha1a� 1i ¼ A2
1e

� 2i � 1t;

analogous to the oscillating term of Eq.(B5) for the
anomalous correlator in the nonlinear case with amplitudes
and phases being initially completely random. In terms of
displacement, such initial conditions give

qj ðtÞ ¼2A1

������
2

� 1

s

cos
�

2� j
N

� � 1

�
cosð� 1tÞ;

which corresponds to the standing wave pattern. Thus, we
see that the phase and amplitude correlations which result
in a nonzero anomalous correlator are directly linked to the
formation of standing waves in this particular example.

This consideration can be generalized for the case of
weakly nonlinear systems and more general initial con-
ditions. Indeed, for weakly nonlinear systems the ampli-
tudesja1j and ja� 1j will be changing slowly over many
oscillations, thus maintaining strongly nonzero anomalous
correlations and standing waves.

In Fig. 8(a), we numerically solve the equations of
motion with initial conditions given by Eq.(28). Here we
plot a color map of the displacementqj ðtÞfor all masses
as a function of time as the system reaches the timescale
required for statistical thermal equilibrium. The nonlinear-
ity parameter� ¼ 4.74, in the regime of strong non-
linearity and outside the regime of validity of our theory.
Nevertheless, we initially consider this example to display
how the system behaves when the phase correlations
develop rapidly. The existence of several regions of

standing wave behavior are clearly visible as darker regions
in the image, as the inset of Fig.8(b) shows.

It is important to emphasize that Fig.8 shows a single
realization of the system, while correlatorsmkðtÞ, nkðtÞ
describe statistical ensemble-averaged quantities. Thus the
existence of the standing wave patterns is not in violation of
the presumed assumption of spatial homogeneity.

Below we give numerical evidence that such coherent
structures can also be observed for smaller values of non-
linearity that are within the regime of validity of our theory.

In Fig. 9(a), we plot the displacement as a function of
time for the system with� ¼ 0.02, a value of nonlinearity
well within the regime of agreement of our theory, as shown
in Figs.7 and5. Here, we prescribe initial conditions so that
the total energy is initially in the first wave number, i.e.,
akðt ¼ 0Þ ¼0 for all k � 1, and plot a single realization.
This corresponds to a pure traveling wave solution in the
linear system; indeed, as seen in Fig.9(a), the system is
initially a traveling wave, represented by series of slanted
parallel lines in the color map ofqj ðtÞ. Conversely, in
Fig. 9(b), we show that by the time the system has reached
the timescale required for statistical thermal equilibrium, a
prominent standing wave has developed, due to the phase
correlations between positive and negative lowest wave
numbers. Notably, phase correlations are not restricted to
only the lowest wave numbers. To emphasize this, we
consider the following spatial frequency filter applied to the
displacement,

q̃j ðtÞ ¼
XN=2

k¼� N=2þ 1

HkQkei2� jk=N ; ð29Þ

where

Hk ¼
�

1 if k ¼ 5; 6

0 otherwise

is selected to only show the waves with frequencies
corresponding tok ¼ 5, 6.

We plot the resulting color map ofq̃j ðtÞ in Fig. 9(c),
with Fig. 9(d) showing a closer look at the boxed region
in Fig. 9(c). Here we clearly still observe these standing

FIG. 8. Color map of the displacementqj ðtÞfor the system with
� ¼ 4.74initialized with particles at rest with initial positions as a
single sine wave. A nonlinear standing wave pattern is visible.
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waves in the selected unfiltered wave numbers, meaning
that the coherent structures are not limited to the lowest
wave number. Our choice of displaying wave numbers
5,6 is arbitrary; we also verified that similar structures
exist over all the wave numbers.

Similarly, in Fig. 10 we obtain similar results for a
moderate value of nonlinearity� ¼ 0.54 just outside the
range of applicability of our theory. We plot the initial time
evolution of the displacements in Fig.10(a), the time
evolution of the displacements in thermal equilibrium in

FIG. 9. Color map of the displacementqj ðtÞfor � ¼ 0.02: (a) initial traveling wave,0 < t < 1000, (b) standing wave structure in
thermal equilibrium,106 < t < 106 þ 1000, (c) q̃j ðtÞ, displacement after removing wave numbersk ¼ 1; …; 4; 7; …; N, (d) closer look
at the boxed region in (c).

FIG. 10. Color map of the displacementqj ðtÞfor � ¼ 0.54: (a) initial traveling wave,0 < t < 1000, (b) standing wave structure in
thermal equilibrium,106 < t < 106 þ 1000, (c) q̃j ðtÞ, displacement after removing wave numbersk ¼ 1; …; 3; 5; …; N, (d) closer look
at the boxed region in (c).
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Fig. 10(b), and the displacements after applying a spatial
frequency filter to emphasize wave numberk ¼ 4 in
Fig. 10(c). We note the arbitrary fluctuations between
the coherent standing waves and between traveling waves
in Figs.10(b) and10(c).

VI. CONCLUSION

In this paper we have given the numerical evidence
that anomalous correlators develop spontaneously in a
classical system. From a theoretical point of view it is
possible to develop a theory for weakly nonlinear dis-
persive waves that accounts for the presence of such an
anomalous correlator. The framework in which the theory
has been developed is the wave turbulence one. In such a
theory, one usually is interested in the second-order
correlatorhaki

a�
kj

i , which is strictly related to the wave
action spectrum. However, what is clear from numerical
simulations of the� -FPUT system is that also the correlator
haki

akj
i can assume values that are different from zero. This

finding has consequences on the standard wave turbulence
theory that is based on the Wick’s selection rule, i.e., the
splitting of higher-order correlators as a sum of products of
second-order correlators. Following Refs.[1,15], we have
generalized the Wick’s rule by including the anomalous
correlators. We note that we differ from the case described
in the S theory [9,10] in that there, the existence of
anomalous correlators was connected with coherent pump-
ing in the system, with the anomalous correlator being a
measure of partial coherence for exiting waves. In our
observations and predictions, waves with random initial
conditions form phase correlations with each other, result-
ing in an anomalous correlator which is initially zero but
then saturates to a nonzero value as it evolves with time.

One of the most striking manifestations of those corre-
lators is the appearance of“ghost excitations,” i.e., those
characterized by negative frequencies. A formula for the
energy content of such excitations as a function of the wave
spectrum is obtained—the results compare favorably with
numerical simulations for the weakly nonlinear regime.
Moreover, we have shown that the spontaneous emergence
of the anomalous correlator is strongly connected with the
formation of nonlinear standing waves; indeed, the pres-
ence of those waves implies a strong correlation between
the phases of positive and negative wave numbers.

Our approach paves a new road to investigate dispersive
nonlinear systems by taking into account not only ampli-
tudes of the waves, as in traditional wave turbulence, but
also the phases of the waves. We conjecture that the
anomalous correlators play an important role in the theory
of extreme events, such as rogue waves, which form via a
mechanism related to phase locking between different wave
numbers[29]. Phase locking also leads to the existence of
solitons in nonlinear media.

As was discussed in Sec.I, anomalous phase correlations
have been observed to play a role in causing shifts of wave

action from turbulence and condensate in the nonlinear
Schrödinger equation[17]. Our approach of extending
wave turbulence theory to include the anomalous corre-
lator could be generalized to address the role these
correlations play in the statistical properties of the nonlinear
Schrödinger equation and other integrable systems. On a
similar note, recurrences in a nonlinear Schrödinger-like
model were shown to be directly related to the formation of
anomalous phase correlations[20]; further investigating the
potential ties between FPUT recurrences and the anoma-
lous correlator is a subject of current work.

Finally, we emphasize that the Hamiltonian we consid-
ered is of the same family as the one for surface gravity
waves (after removing by a canonical transformation
nonresonant three-wave interactions). We predict that also
the anomalous correlators will play an important role in the
understanding of statistical properties of ocean waves.
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APPENDIX A: MATRIX ELEMENTS

Matrix element in Eq.(8).—The matrix elements
governing four-wave interactions for the variableakðtÞare

Tð1Þ
1234 ¼ �

1
4

� ei � ð� k1þ k2þ k3þ k4Þ=N
Y4

i¼1

2sinð� ki=NÞ
�����
� i

p ;

Tð2Þ
1234 ¼ � 3Tð1Þ

1� 234; Tð3Þ
1234 ¼ 3Tð1Þ

4231; Tð4Þ
1234 ¼ � Tð1Þ

� 1234:

ðA1Þ

Matrix elements in the canonical transformation,
Eq.(22).—The coefficients in Eq.(8) suitable for removing
nonresonant terms are given by

Bð1Þ
1234 ¼

Tð1Þ
1234

� 4 þ � 3 þ � 2 � � 1
;

Bð3Þ
1234 ¼

Tð3Þ
1234

� 4 � � 1 � � 2 � � 3
;

Bð4Þ
1234 ¼

Tð4Þ
1234

� � 1 � � 2 � � 3 � � 4
: ðA2Þ
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APPENDIX B: EVOLUTION EQUATIONS FOR
ANOMALOUS SPECTRUM

Starting from the transformation in Eq.(22) and the
generalized Wick’s decomposition in Eq.(21), we obtain

mðaÞ
k ðtÞ ¼mðbÞ

k ðtÞ þ 2½nðbÞ
k ðtÞ þ nðbÞ

� k ðtÞ�

×
X

j

Bð3Þ
k;� k;j;j nðbÞ

j ðtÞ; ðB1Þ

where higher-order terms inmk have been neglected. The
next step consists in building the evolution equation for
mðbÞ

k ðtÞfrom Eq.(23). Interestingly, the evolution equation

for mðbÞ
k ðtÞ appears as a deterministic dispersive nonho-

mogeneous wave evolution equation[15],

i
dmðbÞ

k

dt
¼ 2�̃ km

ðbÞ
k þ

�
ðnðbÞ

k þ nðbÞ
� k Þ

X

j

Tk� kj � j m
ðbÞ
j

�
;

ðB2Þ

with �̃ k ¼ � k þ 2
P

j Tkjkj nðbÞ
j . Such equations have been

derived in the theory of Bose-Einstein condensates and
superconductivity.

The equation for the spectrum, see Ref.[15], is given by

dnðbÞ
k

dt
¼ � 2Im

�
mðbÞ

k

X
Tk;� k;j; � j m

ðbÞ�
j

�
: ðB3Þ

From Eqs.(B2) and(B3), after some algebra, it is possible
to show that the following interesting relations hold:

d½jmðbÞðkÞj2�
dt

¼
d½nðbÞ

k nðbÞ
� k �

dt
;

d½nðbÞ
k � nðbÞ

� k �
dt

¼ 0: ðB4Þ

If nðbÞ
k has reached energy equipartition such that

nðbÞ
k ¼ nðbÞ

� k ¼ const=� k, then jmðbÞ
k j ¼ nðbÞ

k ; therefore, we

expect to observe equipartition also for� kjm
ðbÞ
k j.

We now consider the leading-order solution of Eq.(B2),

mðbÞ
k ðtÞ ¼mðbÞ

k ðt0Þe� i2�̃ kt þ higher-order terms;

and plug it into Eq.(B1), and assuming that the spectrumnk
is in stationary conditions, we get

mðaÞ
k ðtÞ ¼mðbÞ

k ðt0Þe� i2�̃ kt þ 2½nðaÞ
k ðt0Þ þ nðaÞ

� k ðt0Þ�

×
X

j

Bð3Þ
k;� k;j;j nðaÞ

j ðt0Þ: ðB5Þ

Note that we have used the fact that at the leading
ordernðbÞ

k ðt0Þ� nðaÞ
k ðt0Þ.

APPENDIX C: DERIVATION OF ðk � � Þ
SPECTRUM

We consider Eq.(22) and take the Fourier transform in
time to get

aki ;� p
¼ bki ;� p

þ
Z X

j;k;l

Bð1Þ
ijkl bj; � q

bk;� r
bl; � s

� kl
ij �

� q� r � s

� p
d� qrs

þ
Z X

j;k;l

Bð3Þ
ijkl b�

j; � q
b�

k;� r
bl; � s

� l
ijk � � r � s

� p � q
d� qrs

þ
Z X

j;k;l

Bð4Þ
ijkl b�

j; � q
b�

k;� r
b�

l; � s
� ijkl � � p � q� r � s

d� qrs:

ðC1Þ

The next step is to build the second-order correlator
haðki ; � l Þaðkj ; � mÞ� i assuming stationarity.

We use the generalized Wick’s decomposition in
Eq. (21), i.e., including the anomalous correlators. The
leading-order result is contained in Eq.(25).
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